C.U.SHAH UNIVERSITY Summer Examination-2019

Subject Name : Classical Mechanics Subject Code : 5SC01CLM1 Semester : 1 Date : 14/03/2019

Branch: M.Sc. (Physics) Time : 02:30 To 05:30

Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.

- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1		Attempt the Following questions	(07)
	a.	Define constraints.	01
	b.	Define: Generalised Coordinates.	01
	c.	Differentiate Newtonian and Lagrangian for system of particles giving two points only.	01
	d.	Write the general expression of Euler-Lagrange's equation of motion.	01
	e.	What is the mathematical expression for the conservation of angular momentum?	01
	f.	Why is the Hamilton Principle also known as the 'Variational Principle'?	01
	g.	State two significances of the Hamilton over Lagrangian	01
Q-2		Attempt all questions	(14)
	Α	Name different types of constraints. Define each and discuss with	07
	_	suitable examples.	- -
	B	Discuss in detail: Generalised coordinates.	07
		OR	
Q-2		Attempt all questions	(14)
	Α	Deduce the expression for D'Alembert's Principle.	07
	B	Derive the Euler-Lagrange's equation of motion.	07
Q-3		Attempt all questions	(14)
	Α	List various applications of Lagrangian formula. Discuss any one of them	07
		obtaining its Lagrangian.	
	В	Discuss Hamilton's principle. Derive its proof.	07
		OR	
Q-3		Attempt all questions	(14)
-	Α	Derive Hamiltonian formula for a simple pendulum moving with a	07
		support.	
	B	Derive formula for the Hamiltonian of a charged particle in an EM field.	07

SECTION – II

Q-4		Attempt the Following questions	(07)
-	a.	Express Poisson Bracket for two dynamic variables u and v .	01
	b.	Write an identity followed by Poisson brackets.	01
	c.	What is Stable Equilibrium?	01
	d.	What are the Generating Functions?	01
	e.	Give some examples where small oscillation theory is applicable.	01
	f.	What is Gauge transformation?	01
	g.	What is orthogonality of eigen vectors?	01
Q-5		Attempt all questions	(14)
-	Α	Discuss in detail: Hamilton-Jacobi theory	07
	B	Explain Canonical Transformation. Obtain the Hamilton's canonical	07
		equations.	
		OR	
Q-5		Attempt all questions	(14)
	Α	Justify the statement: Gauge transformation is invariant for expressions	07
	р	in electrostatics.	07
	B	Enumerate on Poisson Bracket and derive canonical equations in terms of Poisson bracket notation.	07
0.6		Attempt all amostions	(14)
Q-6		Attempt all questions	(14)
	Α	What is meant by infinitesimal transformation? Derive the relation	07
	р	between infinitesimal transformation and Poisson brackets.	07
	B	Explain the working of Generating functions in obtaining new	07
		Hamiltonian for a system. OR	
06			(14)
Q-6	٨	Attempt all Questions Write a brief note on: Eigen vectors and Eigen frequencies.	(14) 07
	A B		07 07
	D	Explain the theory of small oscillations and General case of coupled oscillations.	07

